High (temperature) OR Increase (the temperature)
If M1 is incorrect $\mathbf{C E}=\mathbf{0}$ for the clip
If M1 is blank, mark on and seek to credit the correct information in the text

M2
The (forward) reaction / to the right is endothermic or takes in / absorbs heat
OR
The reverse reaction / to the left is exothermic or gives out / releases heat

M3 depends on correct M2 and must refer to temperature / heat
M3 depends on a correct statement for M2
At high temperature, the (position of) equilibrium shifts / moves left to right to oppose the increase in temperature

For M3, the position of equilibrium shifts / moves
to absorb heat $O R$
to lower the temperature $O R$
to cool down the reaction
(iii) M1 Increase in / more / large(r) / big(ger) surface area / surface sites Mark independently

For M1 accept Éan increase in surface"
M2 increase in / more successful / productive / effective collisions (in a given time) (on the surface of the catalyst / with the nickel)

For M2 not simply "more collisions"
Ignore "the chance or likelihood" of collisions
(b) M1

No effect / None
If M1 is incorrect $\mathbf{C E}=\mathbf{0}$ for the clip
If M1 is blank, mark on and seek to credit the correct
information in the text
M2 requires a correct M1
Equal / same number / amount of moles / molecules / particles on either side of the equation

OR

2 moles / molecules / particles on the left and 2 moles / molecules / particles on the right

M2 depends on a correct statement for M1
In M2 not "atoms"

M2.(a) (Measure the) volume of gas / mass of the container + contents

Suitable named piece of equipment
Gas syringe (or inverted burette or measuring cylinder, as long as student has referred to the cylinder being filled with water) / balance.
Equipment must be correct for the measurement stated.
(b) Any one of:

- Mass of magnesium

Allow amount of magnesium.

- Surface area of magnesium
(c) (i) Gravity: Conical flask or beaker and funnel /

Vacuum: Sealed container with a side arm and Buchner or Hirsch funnel Must be either gravity filtration (with a V-shaped funnel) or vacuum filtration (with a side-arm conical flask) appropriately drawn.
(ii) Wash with / add (a small amount of cold) water Ignore filtering.

M3.(a) (i) Uses sensible scales.
Lose this mark if the plotted points do not cover half of the paper.
Lose this mark if the graph plot goes off the squared paper
Lose this mark if volume is plotted on the \underline{x}-axis

All points plotted correctly
Allow \pm one small square.

Smooth curve from 0 seconds to at least 135 seconds - the line must pass through or close to all points (\pm one small square).

Make some allowance for the difficulties of drawing a curve but do not allow very thick or doubled lines.
(ii) Any value in the range 91 to 105 s

Allow a range of times within this but not if 90 quoted.
(b) (i) Using $\mathrm{pV}=\mathrm{nRT}$

This mark can be gained in a correctly substituted equation.

$$
100000 \times 570 \times 10^{-6}=n \times 8.31 \times 293
$$

Correct answer with no working scores one mark only.

$$
\mathrm{n}=0.0234 \mathrm{~mol}
$$

Do not penalise precision of answer but must have a minimum of 2 significant figures.
(ii) Mol of $\mathrm{ZnCO}_{3}=0.0234$

Mark consequentially on Q6
M1

Mass of $\mathrm{ZnCO}_{3}=\mathrm{M} 1 \times 125.4=2.9(3)$ or $2.9(4) \mathrm{g}$
If 0.0225 used then mass $=2.8(2) g$
M2
(iii) Difference $=(15.00 / 5)-$ Ans to b If 2.87 g used then percentage is 4.3

M1

Percentage $=(\mathrm{M} 1 / 3.00) \times 100$
Ignore precision beyond 2 significant figures in the final answer
If 2.82 g used from (ii) then percentage $=6.0$

M2

(c) A reaction vessel which is clearly airtight round the bung

Gas collection over water or in a syringe
Collection vessel must be graduated by label or markings Ignore any numbered volume markings.
number of molecules with E greater than Ea. Not 'atoms'.
(b) There are no molecules / particles with zero energy

OR

All of the molecules / particles are moving / have some energy
Not 'atoms'.
The answer should relate the energy to the molecules.
(c) \mathbf{C} (The most probable energy)
(d) M1 The peak of the new curve is displaced to the right and lower than the original

M2 All of the following needed

- The new curve starts at the origin and should begin to separate from the original almost immediately
- and the new curve only crosses the original curve once
- and the total area under the new curve is approximately the same as the original
- and an attempt has been made to draw the new curve correctly towards the axis above the original curve but not to touch the original curve
(e) None / no effect / stays the same

M6.(a) (i) Award mark for \mathbf{X} on the time axis at the point where the lines just become horizontal Allow this mark if \boldsymbol{X} is above the letters "sh" in the word "show" in part(ii) - in the range of lines 31 to 33.
(ii) They are equal / the same

OR

Forward (rate) = Reverse / backward (rate)
Allow the word 'speed' in this context. Ignore reference to concentration.
(b) Both OR forward and reverse reactions occur at the same time

OR both are occurring at once
OR both occur all of the time
OR both are ongoing
OR both never stop
Ignore 'at equal rates'.
Ignore reference to concentration or equilibrium.
The idea that both reactions occur simultaneously is essential.
The simple idea of 'both reactions occurring' is insufficient for the mark.
(c) (i) M1 No effect / no change / none / stays the same

M2 requires correct M1
In M2, ignore reference to particles or atoms.
M2 Equal (number of) moles / molecules on both sides
(ii) M1 Less time or it decreases or (equilibrium) reached faster (ie M1 is a reference to time taken)

If M1 is 'more time / it increases' or 'no effect', then CE=0 for the clip.

Reference to faster/increased rate / increased speed alone penalises M1, but mark on M2 and M3.

M2 More particles / molecules in a given volume / space
OR the particles / molecules are closer together
If M1 is blank, then look for all three marks in the text.
M3 More successful / productive collisions in a given time
OR more collisions with $E>E_{\text {Act }}$ in a given time
OR more frequent successful / productive collisions
OR increased / greater successful / productive collision frequency / rate Ignore reference to reactants / products.
Penalise M3 if an increase / decrease in the value of $E_{\text {Act }}$ is stated.

